
The Evolution to Agentic Al in Cybersecurity -

Threats, Opportunities, Responsible Use, and the Race to Protect

Presented By: Tina Lampe

Tina Lampe Germantown, Illinois

- Director of IT Software Engineering at DIRECTV
- ☐ MS Degree in Cybersecurity from Maryville University
- ☐ Assistant Vice President of the St. Louis ISACA board
- ☐ ISACA SheLeadsTech liaison
- Board member of St. Louis Infragard
- ☐ AAISM (Advanced in AI Security Management)
- ☐ CISSP, CISM, PMP
- USA Ambassador for the Global Council for Responsible Al

Please feel free to ask questions about any of these.

Points on our Journey:

- 1. AI Terminology and Output Testing
- 2. The Evolution: Harnessing the Power of AI in Cybersecurity
- 3. Adversary Amplification with AI
- 4. Ethical and Privacy Considerations
- 5. The Near-Term Future
- 6. Key Actions

- * Generative Al
- * Large Language Models (LLMs)
- * Agentic Al

GenAl, LLMs, Agentic Al – What's the Difference?

Gen AI	LLMs	Agentic AI
Can <u>Generate</u> new content such as text, images, music, code, video	Large Language Models (LLMs) are advanced machine learning models designed to understand and generate human language.	Also called <u>Autonomous A</u> I or <u>Self-directed AI</u> – is proactive without constant human guidance
Reactive – waits for input before creating something new	Humans interact with Large Language Models (LLMs) using <u>Prompts</u> - LLMs will process and generate <u>language or ideas</u> based on these prompts	Operates autonomously (makes decisions, executes actions, perceives then adapt s to environment changes, processes information, generates outputs) <u>to achieve specific goals</u>
<u>Test Output Ouality</u> - by validating output based on input request	Techniques to interact may involve prompt engineering and RAG (retrieval-augmented generation)	<u>Test Output Quality</u> – by focusing on objectives, constraints and oversight mechanisms.
	<u>Test Output Ouality</u> - by validating output based on input request	

Al Agents -vs- Agentic Al

	AI Agents		Agentic AI
0	Example : Chatbots for customer support, simple anomaly detection systems	0	Example : Autonomous threat hunting systems, adaptive defense mechanisms
0	Specialized AI programs designed for specific tasks		Advanced AI systems with a degree of autonomy
	Operate within predefined parameters		Can make independent decisions and take actions
0	React to inputs based on programmed rules		Learns and adapts to new situations
0	Limited autonomy and decision-making capability		Operates across multiple domains and tasks
			Collaborates with other AI systems and humans
	Source: https://right-hand.ai/blog/agentic-ai-in-cybersecurity/		

* Harnessing the Power of Al in Cybersecurity

The AI/Cybersecurity Evolution

Approx 1980's:

- First computer Virus
- Cybersecurity as a profession

Early 2000's:

• Integration of AI via machine learning into cybersecurity

THE EVOLUTION OF ARTIFICIAL INTELLIGENCE IN CYBERSECURITY

TURING, MACHINES, AND THEORETICAL FOUNDATIONS

Turing's foundational work in algorithms and computation provided the groundwork for many modern cybersecurity techniques. As Al began to take shape in the latter half of the 20th century, Turing's principles found new applications in developing intelligent systems to detect and counteract cyber threats.

EARLY DAYS OF COMPUTING

The 1960s and 1970s were not just about the advent of computing but also about the awakening to the digital vulnerabilities that came with it. The lessons learned during this period laid the foundation for the cybersecurity strategies and measures that would be developed in the subsequent years.

EXPERT SYSTEMS

The advent of expert systems in the 1980s can be seen as a pivotal moment in the convergence of Al and cybersecurity. It was a testament to the potential of harnessing Al's power to address real-world challenges and protect digital infrastructures.

MACHINE LEARNING EVOLUTION

The integration of machine learning into cybersecurity during the 21st century represented a monumental shift. It showcased the potential of Al-driven solutions to not only respond to but also anticipate and prevent cyber threats, setting the stage for the next generation of digital defense mechanisms.

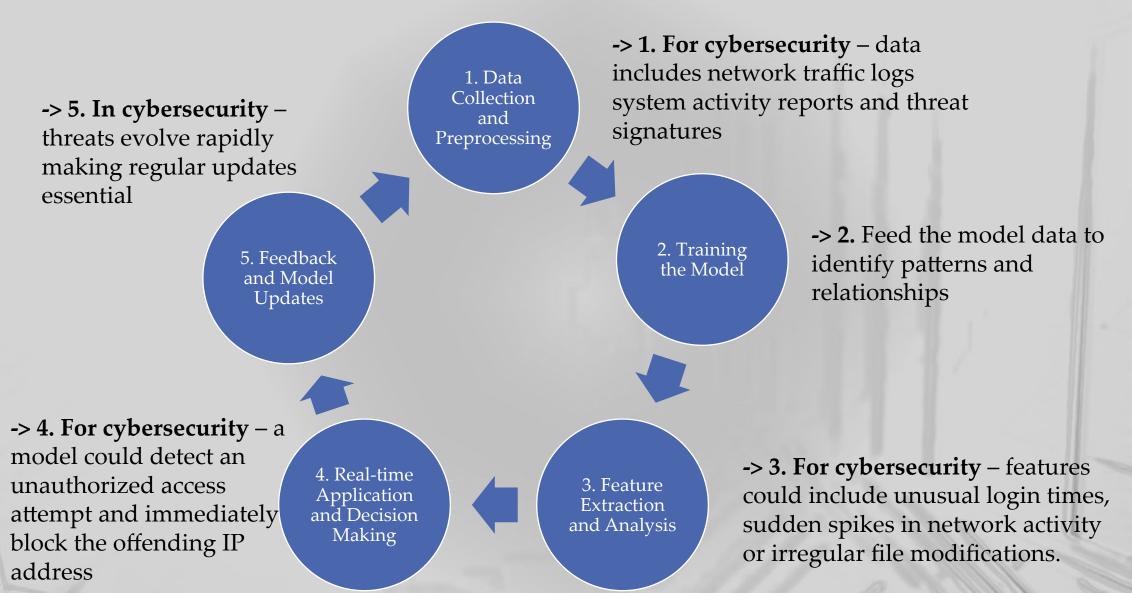
DEEP LEARNING AND NEURAL NETWORKS

The integration of deep learning and neural networks into cybersecurity represents a paradigm shift. It underscores the potential of advanced Al models to not only detect but also autonomously respond to cyber threats, paving the way for a more secure digital future.

LARGE LANGUAGE MODELS

The integration of LLMs into cybersecurity showcases the potential of AI to enhance digital defense mechanisms, making the digital realm safer for everyone. However, it's crucial to recognize that while LLMs bring about advanced protective capabilities, they can also introduce new vulnerabilities and threats.

QUANTUM COMPUTING


The realm of quantum computing, often regarded as the next frontier in computational science, promises to bring about transformative changes in various domains, including artificial intelligence and cybersecurity.

* Source: vc3 blog

Historic Machine Learning/Al Process

2024 View - Al Enhanced Defense

An Efficient, AI Enhanced SOC 'Finding the needle in the haystack'

Uncover hidden priority threats

Real Time Incident Response

Behavior Analysis

Enhanced Human Oversight and Decisions

Predict future attacks

Auto-Adapt defense tactics to evolving threats

Zero Trust Architecture Support

Intelligent Alert Prioritization

AI Powered Threat Intelligence Platforms

(aggregate and analyze data from various sources)

* Source: <u>analyticsinsight.net</u>

Continuous Improvement: Cybersecurity Machine Learning/Al Use Cases

CyberSecurity Machine Learning Use Cases
Detect and Classify Threats
Detect Anomalies
Detect and Prevent Malware
Intrusion Detection
Detect Spam and Phishing
Endpoint Security
Network Risk Scoring
Managing Vulnerabilities
DDoS and Botnet Protection

More Recently – Cybersecurity Enhanced with GenAl

Data Masking for Privacy Protection

Synthetic Malware Generation

Reporting enhancements

Secure Code recommendations

Automated Secure Policy Generation

Creation of Interactive Cybersecurity Training

2025 – Towards more Agentic Al in Cybersecurity

Security Operations Agentic Use Cases	Application Security Agentic Use Cases	
Triage and Investigation	Risk Identification	
Adaptive threat hunting	Application test creation and adaptation	
Response Actions	Dynamic application test execution	
Adversary Simulation	Autonomous Test Case remediation	
Remediate External Exposure	Automated Pen Testing	

Additional Agentic Use Case Execution in CyberSecurity

SecOps	AppSec
Triage and Investigation	☐ Risk Identification
Alert Deduplication	External and Internal Discovery
☐ Alerts Grouping	
☐ Alert Enrichment	Application Test Creation and
	Adaptation
Adaptive Threat Hunting	Adapting to UI changes
Decomposing the Alert	
Searching for Atomic and	Dynamic Application Test Execution
Computed Indicators	Multiple Browsers, Devices
Analyze Behavior Indicators	
	Autonomous Reporting and
Response Actions	Predictive Suggestions
☐ Generating Infrastructure as	
Code	Autonomous Remediation and Test
Perform Endpoint Actions	Case Correction
☐ Security Controls	
	Automated Pentesting

Source: https://research.aimultiple.com/agentic-ai-cybersecurity/

Challenges - Agentic Al

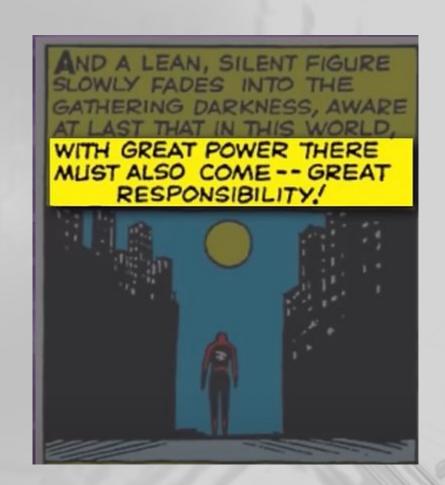
Agentic AI Cybersecurity Implementation Challenges

Lack of transparency and interpretability

Data Quality and Breadth concerns

Maintaining Reliability

Complexity of Implementation


Human Oversight needs

3. Adversary Amplification with Al

Spider-Verse Wisdom

With great power comes great responsibility, and

the ethical use of AI is paramount in securing our digital future.

Al Lowers the Barrier to Entry for Sophisticated Cyber Attacks

According to cybersecuritynews.com, "AI-assisted approach significantly lowers the barrier to entry for malicious actors and enables rapid scaling of attacks-even by technically unskilled individuals."

* Source: cybersecuritynews.com

Major Al-Driven Threat Vectors

Digital Identity

LLM Poisoning

AI Generated Malware

Data Mining Recon As
A Service
-> Attack
Blueprint

AI Powered Social Engineering

4. Ethical and Privacy Considerations

Ethical Considerations

- ☐ Privacy –vs- Security
- Bias and Fairness
- Accountability and Decision Making
- ☐ Transparency and Explanation

* Source: isc2.org

America's Al Action Plan July 2025

"... To win the AI race, the U.S. must lead in innovation, infrastructure, and global partnerships. At the same time, we must center American workers and avoid Orwellian uses of AI. This Action Plan provides a roadmap for doing that," said AI and Crypto Czar David Sacks.

^{*} Source: www.whitehouse.gov/wp-content/uploads/2025/07/Americas-AI-Action-Plan.pdf

... And the Race to Protect Our Organizations

"AI systems are becoming essential tools, profoundly shaping how Americans consume information, but these tools must also be trustworthy."

- Action Plan includes directives such as:
 - ☐ Bolster Critical Infrastructure Cybersecurity
 - Promote Secure-By-Design AI Technologies and Applications

^{*} Source: www.whitehouse.gov/wp-content/uploads/2025/07/Americas-AI-Action-Plan.pdf

Al Value Enablers – World Economic Forum

Cybersecurity is an integral part:

- Frameworks and guidance
- Audits and assessments

#Global Council for Responsible AI US Ambassador

The AI strategy of an organization drives value alignment and must be evaluated through the AI life cycle. This can be achieved through a strong AI governance process. According to the World Economic Forum, there are various enablers to AI value alignment, including:

- Frameworks and guidance foundational elements to guide AI solution development, deployment, and management
- Human engagement essential to the iterative refinement and enhancement of AI solutions
- Organizational change essential strategy to ensure alignment with organizational culture
- Audits and assessments necessary to ensure the effectiveness of AI solutions in maintaining adherence to ethical values and best practices

Source: Larson, B.; Dignum, V.; "Al Value Alignment: How Can We Align Artificial Intelligence with Human Values," World Economic Forum, 17

October 2024, https://www.weforum.org/stories/2024/10/ai-value-alignment-how-we-can-align-artificial-intelligence-with-human-values/

Source: World Economic Forum, "Al Value Alignment: Guiding Artificial Intelligence Towards Shared Human Goals," October 2024, https://www3.weforum.org/docs/WEF_Al_Value_Alignment_2024.pdf

Trustworthy AI Framework Examples

NIST AI 100-1:

Fig. 4. Characteristics of trustworthy AI systems. Valid & Reliable is a necessary condition of trustworthiness and is shown as the base for other trustworthiness characteristics. Accountable & Transparent is shown as a vertical box because it relates to all other characteristics.

What are the main benefits of implementing ISO/IEC 42001?

- Responsible AI: ensures ethical and responsible use of artificial intelligence.
- Reputation management: enhances trust in Al applications.
- Al governance: supports compliance with legal and regulatory standards.
- Practical guidance: manages Al-specific risks effectively.
- Identifying opportunities: Encourages innovation within a structured framework.

ISO/IEC 42001

Al Becoming more Deeply Integrated into Business Operations

Continued Focus Al in Cybersecurity

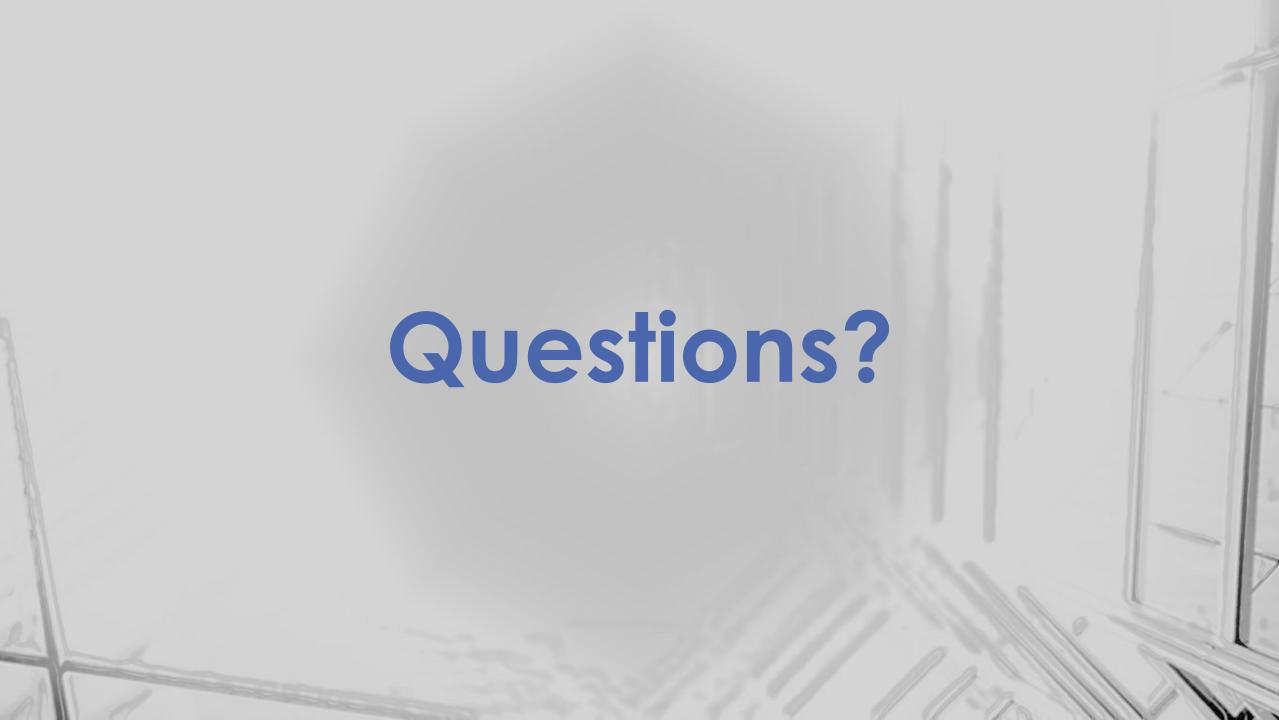
Cyber Resilience and Agility

Targeted Organization
Rankings and Remediations
Based on Business Impact

Refinement of Cyber Defenses near real time

Freeing the Security Team to work on Strategic Tasks

Scaling Cyber Defense Activities when Needed


Continuous Compliance Assessments

Shifting from Vulnerability-Based to Exploitability-Based Security

Key Actions

- 1. Confirm your Organization's AI Cybersecurity Strategy includes Ethical Considerations and Trustworthy AI strategies
- 2. Continually **Invest** time to stay current on AI Cybersecurity enhancements which are progressing at an exponential pace
- 3. Stay **vigilant** in protecting your organization's most valuable assets from AI enhanced cyber threats

That's a Wrap

Feel Free to Connect with me on LinkedIn: https://www.linkedin.com/in/tina-lampe
#Global Council for Responsible AI

Thanks for your time and insights today!