

THE FUTURE **OF PRODUCT** SECURITY

NAVIGATING THE AGE OF **AI & QUANTUM**

Jacob Combs

CISO and Product Security Leader

20+ years across critical infrastructure and highly regulated industries.

Background in IT, Software Development prepared me for Enterprise and Product Security.

OBJECTIVE

HELP LEADERS MOVE FROM "WAIT-AND-SEE" TO ACTION-NOW ON AI & QUANTUM THREATS.

Chart is only for illustration purposes only as it is impossible represent what has not yet occured.

SCOPING OUR FOCUS BACK TO FOUNDATIONS

AVAILABILITY

............

AI SYSTEM SAFETY, FAILURES, & LINITATIONS AI PURSUING ITS OWN GOALS IN CONFLICT WITH HUMAN GOALS OR VALUES

LACK OF CAPABILITY OR ROBUSTNESS

MIT AI RISKS REPOSITORY

LACK OF TRANSPARENCY OR INTERPRETABILITY

MULTI-AGENT RISKS

https://airisk.mit.edu/

AI IN APPLICATIONS & SYSTEMS

The Pragmatic Threats

CONFIDENTIALITY

DATA EXTRACTION & INFERENCE ATTACKS

DATA POISONING

MODEL INVERSION & STEALING

MODEL EVASION

AVAILABILITY

MODEL DEGRADATION OVER TIME

LACK OF ROBUSTNESS, GENERALIZABILITY

THE QUANTUM THREAT: BREAKING TODAY'S TRUST ANCHORS

DECRYPTION OF SENSITIVE DATA

COMPROMISED AUTHENTICATION & INTEGRITY

ENHANCED DENIAL-OF-SERVICE ATTACKS

PQC TRANSITION CHALLENGES

- Performance Overheads
- Integration Complexity
- Extended Lifecycles & Data
 - Retention

KEY REGULATORY & STANDARDS SIGNPOSTS

OWASP Top 10 for Large

Language Model Applications

NIST AI Risk Management

ISO/IEC 42001

NIST

NIST

NIST PQC Standardization Process

ETSI Quantum Safe Cryptography

IETF Drafts & RFCs

INTEGRATED GOVERNANCE: EMBEDDING AI SECURITY

Al Risk Assessment and Threat

Modeling

- Extend existing threat modeling to AI-specific vulnerabilities.
- Assess risks from training data, model architecture, and deployment environment.

Secure AI Design and Development

- Integrate security and privacy-preserving techniques into the AI development lifecycle.
- Secure data pipelines, model versioning, and access controls.

AI Security Testing & Validation

- Implement adversarial testing, fuzzing, bias detection, and explainability checks.
- Validate model robustness against unexpected or malicious inputs.

Al Monitoring, Logging, and

Incident Response

• Continuously monitor models for performance drift, anomalous behavior, and signs of abuse or

attack.

• Develop AI-specific incident response playbooks.

INTEGRATED GOVERNANCE: NAVIGATING THE PQC TRANSITION

Discover & Assess

- Crypto Inventory
- Risk Assessment & Prioritization
- PQC Algorithm Assessment

Design & Pilot

- Crypto-Agility by Design
- Pilot Projects
- Performance Testing

Implement & Validate

- Secure Implementation
- Validation & Testing

Monitor & Maintain

- Secure Update Mechanisms
- Monitor PQC Vulnerabilities

YOUR FIRST STEPS TOWARDS AI & **QUANTUM RESILIENCE**

Inventory & Assess

- Map devices in service beyond 2030 & their current cryptography.
- Trace all ML model versions & their training datasets.

- **Update Design Controls & SDLC**
- Mandate crypto-agility for all new designs.
- Incorporate AI robustness & security requirements.

- Require Software **Bill of Materials** (SBOM).
- Demand Model Bill of Materials (Model-BOM) for Al components.

Educate & Plan

 Initiate PQC transition planning, starting with high-risk, long-lifecycle devices.

• Train development and security teams on Al-specific threats

SECURING THE FUTURE: CORE PRINCIPLE

S

.............

CONVERGING URGENCY

PARAMOUNT

GOVERNANCE

OBSOLETE

USER TRUST & SYSTEM RESILIENCE ARE

PROACTIVE & INTEGRATED

ACTION IS NOW – ADAPT OR BECOME

FINAL THOUGHT

The future of secure products is not about predicting perfectly, but about building **the resilience to adapt effectively.**

